
Some Some StrategiesStrategies for the for the
SemiSemi--AutomaticAutomatic Use of Use of

Hoare Hoare LogicLogic

Juliana Carpes Imperial
Edward Hermann Haeusler

XIV EBL

OUTLINEOUTLINE

l Introduction;
l Hoare Logic rules used;
l The strategies;
l Correctness and Completeness;
l Correctness of a loop without invariant;
l Problem with arrays; and
l Conclusions.

INTRODUCTIONINTRODUCTION
l Proving the correctness of a program:

propositional and first-order problems (size, time
and undecidability);

l Finding non-trivial properties is undecidable
(Rice’s Theorem);

l Hoare Logic: the task of finding the strongest
invariant of a loop is undecidable;

l Using heuristics;
l The aim is to find a set of strategies for a semi-

automatic Hoare Logic prover to minimize time,
human interference and calls to a first-order
prover;

INTRODUCTIONINTRODUCTION
l Use strategies to reduce the search space

so that the proof is constructed in a more
efficient way;

l Some rules have first-order sentences that
must be proved;

l Some proofs can be syntactically correct
with non-demonstrable sentences;

l So, it is possible to have many proofs that
satisfy the rules but with non-
demonstrable sentences;

l It is worth trying to find valid sentences
without using a theorem prover; and

INTRODUCTIONINTRODUCTION
{true} a := 5 {true} true → a = 5

{true} a := 5 {a = 5}
true → 5 = 5 {5 = 5} a := 5 {a = 5}

{true} a := 5 {a = 5}

l Demonstrating sentences is often inefficient
and can lead the prover to an infinite loop.

HOARE LOGIC RULES HOARE LOGIC RULES
USEDUSED

THE STRATEGIESTHE STRATEGIES
l Assumption: the program does not have

arrays;
l The loop’s invariants are given by the user;
l From the right to the left:

– The post-condition is known;
– If a pre-condition is found, it is weakened:
– P → Q { Q } C { R }

{ P } C { R } P is known
– P ∧ B → R_ { R }_C { P }

{ P ∧ B } C { P }________
{ P } while B do C od { P ∧ ¬B }
loop

THE STRATEGIESTHE STRATEGIES
{ P } while ... { P ∧ ¬B } P ∧ ¬B → R

{ P } while ... { R } { R } C { Q }
{ P } while ... ; C { Q }

sequence of commands after a loop
– To the while, skip and assignment commands it

is only necessary to apply the right rule;
– To the sequence of commands too, unless the

first one is a while command; and
– if-then-else command:

THE STRATEGIES FROM THE STRATEGIES FROM
THE LEFT TO THE RIGHTTHE LEFT TO THE RIGHT

l Only used if the post-condition is not
known and only after a loop;

l The strategies find the strongest post-
condition for each command;

l The skip command is proved correct
using its rule and the while command is
proved correct using the other approach;

l The post-condition of a command is the
pre-condition of the next one;

THE STRATEGIES FROM THE STRATEGIES FROM
THE LEFT TO THE RIGHTTHE LEFT TO THE RIGHT

l Assignments:
– { P } x := E { Q };
– { P } x := E(x) { Q };
– { P(x) } x := E { Q }; and
– { P(x) } x := E(x) { Q };

THE STRATEGIES FROM THE STRATEGIES FROM
THE LEFT TO THE RIGHTTHE LEFT TO THE RIGHT

THE STRATEGIES FROM THE STRATEGIES FROM
THE LEFT TO THE RIGHTTHE LEFT TO THE RIGHT

l If-then-else:
– If P has information to evaluate B, then one

between P ∧ B and P ∧ +B is a contradiction;
and

– A ∨ ⊥≡ A .

LOOP’S CORRECTNESS LOOP’S CORRECTNESS
WITHOUT INVARIANTWITHOUT INVARIANT

LOOP’S CORRECTNESS LOOP’S CORRECTNESS
WITHOUT INVARIANTWITHOUT INVARIANT

l P must be known;
l I ∧ B → R and P → I ⇒ P ∧ B → R;
l I ∧ ¬B → R and P → I ⇒ P ∧ ¬B → R;
l I may be the interpolant;
l In some cases, the invariant is not

necessary; and
l The need of user help is reduced, but

the size of the proof increases.

CORRECTNESS AND CORRECTNESS AND
COMPLETENESSCOMPLETENESS

l The sentences shown above can be
proved and the proofs above obey the
Hoare Logic;

l Proving the correctness from the right to
the left can be considered complete
because it is based in the known process
Dijkstra’s Weakest Pre-Condition;

CORRECTNESS AND CORRECTNESS AND
COMPLETENESSCOMPLETENESS

l So, if { P } C { Q } is proved from the right
to the left and P is known, P can be
weakened to the pre-condition found when
proving the program this way;

l No relevant information is discarded when
proving the program from the left to the
right (the strongest post-condition results);

l So, if { P } C { Q } is proved from the left to
the right and Q is known, the post-
condition found when proving the program
this way can be weakened to Q;

CORRECTNESS AND CORRECTNESS AND
COMPLETENESSCOMPLETENESS

l Lemma 1: The strategies for the
assignments produce the strongest post-
condition;

l Lemma 2: The strategies for the if
commands produce the strongest post-
condition;

l Theorem: Using the strategies for proving
the correctness from the left to the right
always produce the strongest post-
condition for the program;

l The concept of information is used;

CORRECTNESS AND CORRECTNESS AND
COMPLETENESSCOMPLETENESS

l When using the strategies it is only
possible to have one proof of correctness;

l When proving the correctness of a
command manually, one can weaken the
pre-condition, strengthen the post-
condition (if they are known) or apply a
rule to the command being verified;

l The weakenings can be put upwards or
downwards the proof if they are not done
to a while command:

CORRECTNESS AND CORRECTNESS AND
COMPLETENESSCOMPLETENESS

CORRECTNESS AND CORRECTNESS AND
COMPLETENESSCOMPLETENESS

PROBLEM WITH ARRAYSPROBLEM WITH ARRAYS
l When arrays are included, the

construction of proofs is not automatically
feasible anymore;

l The strategies shown above might not
behave properly with assignments
a[i] := E(a, i);

l The properties describing arrays are
usually related with all its elements and
not with a specific one;

l User interaction is used in the
implementation;

PROBLEM WITH ARRAYSPROBLEM WITH ARRAYS
l Example:

PROBLEM WITH ARRAYSPROBLEM WITH ARRAYS
l Reducing the array problem to the

invariant problem;
l The other positions are not changed;
l The assignment to an array position

also has an invariant;

PROBLEM WITH ARRAYSPROBLEM WITH ARRAYS
l Remove →, ↔, ∃ and non-atomic ¬

(whenever possible);
l Only ∀, ∧, ∨, and atomic ¬;
l Put inside ¬ expressions;
l From the right to the left: only used if

the array is not mentioned in the
post-condition;

PROBLEM WITH ARRAYSPROBLEM WITH ARRAYS
l From the left to the right: weaken the pre-

condition;
l ∀ when it is alone or inside a ∧, ∨:

l Now the proof can be done using one of
the strategies for the assignment; and

l In the other situations, I may need the help
from the user.

CONCLUSIONSCONCLUSIONS
l Because of the array problem and loops’

invariants, user interaction is needed;
l Implementation in Prolog validated the

strategies;
l If there are no arrays, when a proof of

{ P } C { Q } exists, the prototype shows
one, and every sentence is provable;

l Future steps:
– Provide a reasonable graphic output; and
– Find more strategies for arrays.

