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OUTLINEOUTLINE

l Introduction;
l Hoare Logic rules used;
l The strategies;
l Correctness and Completeness;
l Correctness of a loop without invariant;
l Problem with arrays; and
l Conclusions.



INTRODUCTIONINTRODUCTION
l Proving the correctness of a program: 

propositional and first-order problems (size, time 
and undecidability);

l Finding non-trivial properties is undecidable
(Rice’s Theorem);

l Hoare Logic: the task of finding the strongest 
invariant of a loop is undecidable; 

l Using heuristics; 
l The aim is to find a set of strategies for a semi-

automatic Hoare Logic prover to minimize time, 
human interference and calls to a first-order 
prover;



INTRODUCTIONINTRODUCTION
l Use strategies to reduce the search space 

so that the proof is constructed in a more 
efficient way;

l Some rules have first-order sentences that 
must be proved;

l Some proofs can be syntactically correct 
with non-demonstrable sentences;

l So, it is possible to have many proofs that 
satisfy the rules but with non-
demonstrable sentences;

l It is worth trying to find valid sentences 
without using a theorem prover; and 



INTRODUCTIONINTRODUCTION
{true} a := 5 {true}  true → a = 5 

{true} a := 5 {a = 5}
true → 5 = 5  {5 = 5} a := 5 {a = 5}

{true} a := 5 {a = 5}

l Demonstrating sentences is often inefficient 
and can lead the prover to an infinite loop.



HOARE LOGIC RULES HOARE LOGIC RULES 
USEDUSED



THE STRATEGIESTHE STRATEGIES
l Assumption: the program does not have 

arrays;
l The loop’s invariants are given by the user;
l From the right to the left:

– The post-condition is known;
– If a pre-condition is found, it is weakened:
– P → Q  { Q } C { R }

{ P } C { R } P is known
– P ∧ B → R_ { R }_C { P }                                        

{ P ∧ B } C { P }________
{ P } while B do C od { P ∧ ¬B }         
loop



THE STRATEGIESTHE STRATEGIES
{ P } while ... { P ∧ ¬B }  P ∧ ¬B → R

{ P } while ... { R }      { R } C { Q }
{ P } while ... ; C { Q }

sequence of commands after a loop
– To the while, skip and assignment commands it 

is only necessary to apply the right rule;
– To the sequence of commands too, unless the 

first one is a while command; and
– if-then-else command:



THE STRATEGIES FROM THE STRATEGIES FROM 
THE LEFT TO THE RIGHTTHE LEFT TO THE RIGHT

l Only used if the post-condition is not 
known and only after a loop;

l The strategies find the strongest post-
condition for each command;

l The skip command is proved correct 
using its rule and the while command is 
proved correct using the other approach;

l The post-condition of a command is the 
pre-condition of the next one;



THE STRATEGIES FROM THE STRATEGIES FROM 
THE LEFT TO THE RIGHTTHE LEFT TO THE RIGHT

l Assignments:
– { P } x := E { Q };
– { P } x := E( x ) { Q };
– { P( x ) } x := E { Q }; and
– { P( x ) } x := E( x ) { Q };



THE STRATEGIES FROM THE STRATEGIES FROM 
THE LEFT TO THE RIGHTTHE LEFT TO THE RIGHT



THE STRATEGIES FROM THE STRATEGIES FROM 
THE LEFT TO THE RIGHTTHE LEFT TO THE RIGHT

l If-then-else:
– If P has information to evaluate B, then one 

between P ∧ B and P ∧ +B is a contradiction; 
and 

– A ∨ ⊥≡ A .



LOOP’S CORRECTNESS LOOP’S CORRECTNESS 
WITHOUT INVARIANTWITHOUT INVARIANT



LOOP’S CORRECTNESS LOOP’S CORRECTNESS 
WITHOUT INVARIANTWITHOUT INVARIANT

l P must be known;
l I ∧ B → R and P → I ⇒ P ∧ B → R;
l I ∧ ¬B → R and P → I ⇒ P ∧ ¬B → R;
l I may be the interpolant;
l In some cases, the invariant is not

necessary; and
l The need of user help is reduced, but

the size of the proof increases.



CORRECTNESS AND CORRECTNESS AND 
COMPLETENESSCOMPLETENESS

l The sentences shown above can be 
proved and the proofs above obey the 
Hoare Logic;

l Proving the correctness from the right to 
the left can be considered complete 
because it is based in the known process 
Dijkstra’s Weakest Pre-Condition;



CORRECTNESS AND CORRECTNESS AND 
COMPLETENESSCOMPLETENESS

l So, if { P } C { Q } is proved from the right 
to the left and P is known, P can be 
weakened to the pre-condition found when 
proving the program this way;

l No relevant information is discarded when 
proving the program from the left to the 
right (the strongest post-condition results);

l So, if { P } C { Q } is proved from the left to 
the right and Q is known, the post-
condition found when proving the program 
this way can be weakened to Q;



CORRECTNESS AND CORRECTNESS AND 
COMPLETENESSCOMPLETENESS

l Lemma 1: The strategies for the 
assignments produce the strongest post-
condition;

l Lemma 2: The strategies for the if
commands produce the strongest post-
condition;

l Theorem: Using the strategies for proving 
the correctness from the left to the right 
always produce the strongest post-
condition for the program;

l The concept of information is used;



CORRECTNESS AND CORRECTNESS AND 
COMPLETENESSCOMPLETENESS

l When using the strategies it is only 
possible to have one proof of correctness;

l When proving the correctness of a 
command manually, one can weaken the 
pre-condition, strengthen the post-
condition (if they are known) or apply a 
rule to the command being verified;

l The weakenings can be put upwards or 
downwards the proof if they are not done 
to a while command:



CORRECTNESS AND CORRECTNESS AND 
COMPLETENESSCOMPLETENESS



CORRECTNESS AND CORRECTNESS AND 
COMPLETENESSCOMPLETENESS



PROBLEM WITH ARRAYSPROBLEM WITH ARRAYS
l When arrays are included, the 

construction of proofs is not automatically 
feasible anymore;

l The strategies shown above might not 
behave properly with assignments            
a[ i ] := E(a, i);

l The properties describing arrays are 
usually related with all its elements and 
not with a specific one;

l User interaction is used in the 
implementation; 



PROBLEM WITH ARRAYSPROBLEM WITH ARRAYS
l Example:



PROBLEM WITH ARRAYSPROBLEM WITH ARRAYS
l Reducing the array problem to the

invariant problem;
l The other positions are not changed;
l The assignment to an array position

also has an invariant;



PROBLEM WITH ARRAYSPROBLEM WITH ARRAYS
l Remove →, ↔, ∃ and non-atomic ¬

(whenever possible);
l Only ∀, ∧, ∨, and atomic ¬;
l Put inside ¬ expressions;
l From the right to the left: only used if 

the array is not mentioned in the
post-condition; 



PROBLEM WITH ARRAYSPROBLEM WITH ARRAYS
l From the left to the right: weaken the pre-

condition; 
l ∀ when it is alone or inside a  ∧, ∨:

l Now the proof can be done using one of 
the strategies for the assignment; and

l In the other situations, I may need the help
from the user.



CONCLUSIONSCONCLUSIONS
l Because of the array problem and loops’ 

invariants, user interaction is needed;
l Implementation in Prolog validated the 

strategies;
l If there are no arrays, when a proof of            

{ P } C { Q } exists, the prototype shows 
one, and every sentence is provable;

l Future steps:
– Provide a reasonable graphic output; and
– Find more strategies for arrays.


