Some Strategies for the
Semi-Automatic Use of
Hoare Logic

Juliana Carpes |
Edward Hermann Ha

XIV EBL

\OU:I'J_INE

e Introduction;
e Hoare Logic rules used,;
e The strategies;

e Correctness and Completeness;
e Correctness of a loop without invariant
e Problem with arrays; and

e Conclusions.

INTRODUCTION

Proving the correctness of ap
propositional and first-order prob
and undecidability);

Finding non-trivial properties is undec
(Rice’s Theorem);

Hoare Logic: the task of finding the strong
iInvariant of a loop is undecidable;

Using heuristics;

The aim is to find a set of strategies for a semi-
automatic Hoare Logic prover to minimize time,
human interference and calls to a first-order
prover;

ram:
S (size, time

" INTRODUCTION

he search space
ted in a more

e Use strategies to reduc
so that the proof is constr
efficient way;

e Some rules have first-order sen
must be proved,;

e Some proofs can be syntactically c
with non-demonstrable sentences;

® S0, It Is possible to have many proofs
satisfy the rules but with non-
demonstrable sentences;

® |t Is worth trying to find valid sentences
without using a theorem prover; and

INTRODUCTION

{true} a := 5 {true} tr ® a =>5
{true} a :=5 {a = 5}

true ® 5=5 {5 =5} a:=5
{true} a :=5 {a = 5}

® Demonstrating sentences is often In
and can lead the prover to an infinite

HOAR {)QIIBC RULES
USE N
B} Co {]

[PAB}CL{@} {PA [PAB}C{Q} PA-E=Q

[P} if Bthen Cy else Ca fi {Q) [P} if Bthen C fi {q]
(Fi CL{B {RpGo{@) P—R {RC{Q
{P(V/E)}V:=E {F} [P} Cy;Cy Q) {F}C {@}
(FAB}C{F} (PIC{R} ER-=0

{F} skip (P} (P} while Bdo C od {F / ~B] (P} C (@)

THE STRATEGIES

e Assumption: the progra
arrays;

e The loop’s invariants are given

e From the right to the left:
— The post-condition is known;
— If a pre-condition is found, it is weakened:

-P® Q { Q} C{ R}

oes not have

{ P} C{ R} P is known
— PUB® R { R} C{ P}
{ PUB} C{ P}
{ P} while Bdo Cod { P U®@B}

loop

THE STRATEGIES

{ P} while ... { PU@GB} PUY@B® R
{ P} while ... { R} { R} C{ Q}
{ P} while ... ; C }

sequence of commands after a loo

— To the while, skip and assignment co
IS only necessary to apply the right rule,

— To the sequence of commands too, unles
first one is a while command; and

— If-then-else command:
FAB — P [A}C {Q@y FA-B = Fs [Fa} Ca {Q}

It

[PAEBYC1L {Q) [F A =B} Ca {@}

[P} if B then C1 else C2 fi {2}

D —iRF - PYAiqFR —BPY -+ P —=—i{FAs BPYvwisF A B

THE STRATEGIES FROM
THE LEFT TO THE RIGHT

e Only used If the post-conditio
known and only after a loop;

e The strategies find the strongest p
condition for each command,

e The skip command is proved correct
using its rule and the while command |
proved correct using the other approach

e The post-condition of a command is the
pre-condition of the next one;

THE STRATEGIES FROM
THE LEFT TO THE RIGHT

e Assignments:
-{ P} x:=E{ Q};

-{ P} x:=E x) {1 Q}
-{ P(x)}x:=E{ Q};and
-1 PO x) } x =B x) { Q};
P— (PMNE=E) [PANE=FE}z=E{FAxz=E]}

[P} z:=E{PAxz=E}

F— (P AJyE(x) =Ely])] {F NIy E(x)=FEly)|}x = FEiz) {F M3yizx= Ely))]

[F} x = Eiz) {F AJy(xz= Ely])}
T

THE STRATEGIES FROM
THE LEFT TO\THE RIGHT

Plz) —= (Pla) A E = E] [Pla) \NE=FE}xz=FE {FPlajhxz=F

[Plz)} = .= FE {Fla) Az =FE}

P(z) — (3aP(a) N\E=E) {3aPla) "E=E}z:=F {JaP(a) "z=E

F(x] — (Pla) AE(zx) = E(a)] {FPla) A E(x) = Ela)} == E(x) {Pla) " z= Ela)

[P(z)} z:=F {3aF(a) Az = E}

[Plx)} = = Eiz) {Fla] Az = Ela]}
—
(z) — 3a(Pia) A Eiz) = Ela)] {3aiPla) A E(x) =E{a))} == E(x| {3a(Pla) A z= Eia)

[P(z]} == E(z) {3a(P(a) Az = Ela))}

THE STRATEGIES FROM
THE LEFT TO THE RIGHT

e If-then-else:

— If P has information to evaluate B, t
between P UB and P U+B is a contra
and

_AU7r A,

[PABYCL {Q) Q—=QvR {FA-B} C:{R} A—Q@Yv AR

[PAB}Y 1 {Q VR [P A=EB} C: {@V R}

[P} if B then C1 else Ca fi (@ v R}

LOOP’'S CORRECTNESS

WITHOUT Im’A\RIANT

InB—R {R}C{F}

(I~ B} C{F} P—1I

{IAB}C{I}

(I} while B do C od {TA-B} TA-B —Q

P—1 {I} while B do C od {Q}

[P} while B do C od {3}

| OOP’'S CORRECTNESS
WITHOUT INVARIANT

e P must be known:;
e|lUB® RandP® IP PUB
el UBB® RandP® I b PU®ZB
e | may be the interpolant;

® [n some cases, the invariant IS not
necessary; and

e The need of user help is reduced, bu
the size of the proof increases.

CORRECINESS AND
COI\/IPLE\TENESS

be

e The sentences shown above
oroved and the proofs above ob
Hoare Logic;

e Proving the correctness from the rig
the left can be considered complete
because it Is based in the known proce
Dijkstra’s Weakest Pre-Condition;

CORRECINESS AND
COI\/IPLE\TENESS

e SO,If{P}C{Q}is proved frongthe right
to the left and P is known, P can
weakened to the pre-condition fou
proving the program this way;

e No relevant information is discarded
proving the program from the left to th
right (the strongest post-condition resul

e SO,If{P}C{Q}is proved from the left t
the right and Q is known, the post-
condition found when proving the program
this way can be weakened to Q;

CORRECINESS AND
COI\/IPLE\TENESS

e Lemma 1: The strategies for
assignments produce the stron
condition;

e Lemma 2: The strategies for the if
commands produce the strongest po
condition;

e Theorem: Using the strategies for provi
the correctness from the left to the right
always produce the strongest post-
condition for the program;

e The concept of Information Is used;

CORRECINESS AND
COI\/IPLE\TENESS

e \When using the strategies it |
possible to have one proof of co ness,

e \When proving the correctness of a
command manually, one can weaken
pre-condition, strengthen the post-
condition (if they are known) or apply a
rule to the command being verified,;

e The weakenings can be put upwards or
downwards the proof if they are not done
to a while command:

CORRECTNESS AND
COI\/IPLE\TEJ\{ESS

S S S T S - I 1 3 Oy 1
F — R [R } & 7 Cx §{ Q }
1 P Y Sy 5 Cx i Q]

P —- R { R} Cyp { g}
{ B+ C1 18 b 8 1 2y {2 b
I B} 2y 2 Ce i 2}

LB &y 4038+ 408 FCy 1R G

| P} C; ;7 Cy 1 RO} P —
I B} 2y 2 o}

82 1 2 { R} P — 0
[B 2y {08 1 I 3 F S 120
I B 2y o i 2}

CORRECGTINESS AND
COI\/IPLE\TENES

i RnB G 1 Q) {Ra-B G Q0
P =R { R} 1f B then ¢ elzse ¢, f1 { Q }
I'P} 1f B then ¢ else ¢ f1 { Q]

PnBs+BEnBE {EnB}C {Q} PA-B=RBEnE {EnB}C {01}

L PAB TG Q) { PAa-B 2 | Q]
I'pt 1f B then ¢ else ¢ f1 { Q }

{ PaB G R} {PAaSB}C RO

I'P} 1f B then ¢ else & f1 { R} E —
'} 1f B then ¢ else & f1 { Q!

{PnB) & { R} R—=0Q {FPn-B) {R} R—=0Q

L PA B 0 Q) i BEA B PG Q
I'p Y 1f B then ¢ else ¢ f1 { Q !

PROBLEM-WITH ARRAYS

e \When arrays are included, the
construction of proofs is no
feasible anymore;

e The strategies shown above mig
behave properly with assignments
a[1]:=E(a,)

e The properties describing arrays are

usually related with all its elements and
not with a specific one;

e User Interaction is used In the
Implementation;

utomatically

PROBLEM-WITH ARRAYS

e Example:

P—=0Q {Q}a[1] :=1
I PYa[x1] =2121{0Q)]

[Q)

)

(Phi=i}af]:=i{PAdf]=1} Phdij=i=

PoPhisi (Phi=i}al]=1{0]
[P} ali] =1 {Q}

whete P=Yj(j <i—al]=j) and § =¥j(j <14+ 1= qfj]=7).
|

PROBLEM-WITH ARRAYS

lem to the

e Reducing the array pr
Invariant problem;

The other positions are not C

ne assignment to an array po
also has an invariant;

ed:

{IaBla) =B(a) bafu] csB(a){Tnaf1]=E(a)} Tnafi]=Ea]4

[nB+TaBla]) = E[a] {InBla)=Ela)baf1]2Ea){]}

{InbBhafi] =Ea]{l}
{Thohle Bdoafa] :E(a)oed{Inal}

PROBLEM-WITH ARRAYS

e Remove ®, « , $and
(whenever possible);

e Only ", U, U, and atomic @
e Put inside @ expressions,

e From the right to the left: only us
the array is not mentioned in the
post-condition;

n-atomic @

PROBLEM-WITH ARRAYS

e From the left to the right:
condition;

e " whenitis alone or inside a L

eaken the pre-

Y31 P({1, 3, a) =¥%] (1= 3] —=PFP(1, 3, a) |

e Now the proof can be done using one
the strategies for the assignment; and

e In the other situations, | may need the he
from the user.

CONCLUSIONS

e Because of the array probtem and loops’
Invariants, user interaction isN\gegeded;

e Implementation in Prolog valida
strategies,;
e If there are no arrays, when a proof

{P}C{Q} exists, the prototype sho
one, and every sentence is provable;

e Future steps:
— Provide areasonable graphic output; and
— Find more strategies for arrays.

